Package: picR 1.0.0

picR: Predictive Information Criteria for Model Selection

Computation of predictive information criteria (PIC) from select model object classes for model selection in predictive contexts. In contrast to the more widely used Akaike Information Criterion (AIC), which are derived under the assumption that target(s) of prediction (i.e. validation data) are independently and identically distributed to the fitting data, the PIC are derived under less restrictive assumptions and thus generalize AIC to the more practically relevant case of training/validation data heterogeneity. The methodology featured in this package is based on Flores (2021) <https://iro.uiowa.edu/esploro/outputs/doctoral/A-new-class-of-information-criteria/9984097169902771?institution=01IOWA_INST> "A new class of information criteria for improved prediction in the presence of training/validation data heterogeneity".

Authors:Javier Flores [aut, cre]

picR_1.0.0.tar.gz
picR_1.0.0.zip(r-4.5)picR_1.0.0.zip(r-4.4)picR_1.0.0.zip(r-4.3)
picR_1.0.0.tgz(r-4.4-any)picR_1.0.0.tgz(r-4.3-any)
picR_1.0.0.tar.gz(r-4.5-noble)picR_1.0.0.tar.gz(r-4.4-noble)
picR_1.0.0.tgz(r-4.4-emscripten)picR_1.0.0.tgz(r-4.3-emscripten)
picR.pdf |picR.html
picR/json (API)
NEWS

# Install 'picR' in R:
install.packages('picR', repos = c('https://javenrflo.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/javenrflo/picr/issues

On CRAN:

2.70 score 3 scripts 148 downloads 1 exports 0 dependencies

Last updated 2 years agofrom:86937daf4d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:PIC

Dependencies: