Package: picR 1.0.0

picR: Predictive Information Criteria for Model Selection

Computation of predictive information criteria (PIC) from select model object classes for model selection in predictive contexts. In contrast to the more widely used Akaike Information Criterion (AIC), which are derived under the assumption that target(s) of prediction (i.e. validation data) are independently and identically distributed to the fitting data, the PIC are derived under less restrictive assumptions and thus generalize AIC to the more practically relevant case of training/validation data heterogeneity. The methodology featured in this package is based on Flores (2021) <https://iro.uiowa.edu/esploro/outputs/doctoral/A-new-class-of-information-criteria/9984097169902771?institution=01IOWA_INST> "A new class of information criteria for improved prediction in the presence of training/validation data heterogeneity".

Authors:Javier Flores [aut, cre]

picR_1.0.0.tar.gz
picR_1.0.0.zip(r-4.5)picR_1.0.0.zip(r-4.4)picR_1.0.0.zip(r-4.3)
picR_1.0.0.tgz(r-4.5-any)picR_1.0.0.tgz(r-4.4-any)picR_1.0.0.tgz(r-4.3-any)
picR_1.0.0.tar.gz(r-4.5-noble)picR_1.0.0.tar.gz(r-4.4-noble)
picR_1.0.0.tgz(r-4.4-emscripten)picR_1.0.0.tgz(r-4.3-emscripten)
picR.pdf |picR.html
picR/json (API)
NEWS

# Install 'picR' in R:
install.packages('picR', repos = c('https://javenrflo.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/javenrflo/picr/issues

On CRAN:

Conda:

2.70 score 3 scripts 177 downloads 1 exports 0 dependencies

Last updated 2 years agofrom:86937daf4d. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 31 2025
R-4.5-winOKMar 31 2025
R-4.5-macOKMar 31 2025
R-4.5-linuxOKMar 31 2025
R-4.4-winOKMar 31 2025
R-4.4-macOKMar 31 2025
R-4.4-linuxOKMar 31 2025
R-4.3-winOKMar 31 2025
R-4.3-macOKMar 31 2025

Exports:PIC

Dependencies: