Package: picR 1.0.0
picR: Predictive Information Criteria for Model Selection
Computation of predictive information criteria (PIC) from select model object classes for model selection in predictive contexts. In contrast to the more widely used Akaike Information Criterion (AIC), which are derived under the assumption that target(s) of prediction (i.e. validation data) are independently and identically distributed to the fitting data, the PIC are derived under less restrictive assumptions and thus generalize AIC to the more practically relevant case of training/validation data heterogeneity. The methodology featured in this package is based on Flores (2021) <https://iro.uiowa.edu/esploro/outputs/doctoral/A-new-class-of-information-criteria/9984097169902771?institution=01IOWA_INST> "A new class of information criteria for improved prediction in the presence of training/validation data heterogeneity".
Authors:
picR_1.0.0.tar.gz
picR_1.0.0.zip(r-4.5)picR_1.0.0.zip(r-4.4)picR_1.0.0.zip(r-4.3)
picR_1.0.0.tgz(r-4.4-any)picR_1.0.0.tgz(r-4.3-any)
picR_1.0.0.tar.gz(r-4.5-noble)picR_1.0.0.tar.gz(r-4.4-noble)
picR_1.0.0.tgz(r-4.4-emscripten)picR_1.0.0.tgz(r-4.3-emscripten)
picR.pdf |picR.html✨
picR/json (API)
NEWS
# Install 'picR' in R: |
install.packages('picR', repos = c('https://javenrflo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/javenrflo/picr/issues
Last updated 2 years agofrom:86937daf4d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | OK | Nov 01 2024 |
R-4.5-linux | OK | Nov 01 2024 |
R-4.4-win | OK | Nov 01 2024 |
R-4.4-mac | OK | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:PIC
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Predictive Information Criteria | PIC |
PIC method for Linear Models | PIC.lm |
PIC method for Multivariable Linear Models | PIC.mlm |